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Abstract

Data mining consists of a set of powerful methods that have been successfully applied to many different application domains, including

business, engineering, and bioinformatics. In this paper, we propose an innovative approach that uses genetic algorithms to mine a set of temporal

behavior data output by a biological system in order to determine the kinetic parameters of the system. Analyzing the behavior of a biological

network is a complicated task. In our approach, the machine learning method is integrated with the framework of system dynamics so that its

findings are expressed in a form of system dynamics model. An application of the method to the cell division cycle model has shown that the

method can discover approximate parametric values of the system and reproduce the input behavior.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditionally, researchers adopt the reductionism to study

biological phenomena, i.e. analyzing a system by breaking it

into constituents repeatedly until they can be observed directly

(Gallagher & Appenzeller, 1999). In order to find the function

and role of a component, the researcher has to repeatedly

conduct experiments with different system parameters or

components. Although this approach works fine in most

situations, it often encounters difficulties when we intend to

examine the interaction effects within a system or when the

system is complicated. It is also well-known that the net

behavior of a biological system is usually not the sum of its

components’ behavior (Csete & Doyle, 2002) because of the

existence of the so-called ‘emergent property’ (Bhalla &

Lyengar, 1999; Gardner & Collins, 2000; Yi, Huang, Simon, &

Doyle, 2000).

Recently, a system view of biology called systems biology

has been proposed (Chong & Ray, 2002; Davidson, Rast,

Oliveri, Ransick, Calestani and Yuh, 2000; Kitano, 2002a),

which aims to the development of a system-level under-

standing of biological systems (Kitano, 2002a). In other words,

one wants to understand not only the molecules but also
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the cause–effect relationships linking the behavior of mol-

ecules as well as the characteristics and functions of a system.

Although artificial intelligence has increasingly been used in

analyzing biological data for years, this is certainly a more

difficult case and needs innovative methods.

We propose an approach that integrates system dynamics

and data mining methods to induce the dynamic behavior of a

biological system in this paper. System dynamics is a discipline

that studies the dynamic behavior of social systems (Forrester,

1961). In particular, it has an advantage in modeling the

information-feedback characteristics to see how system

structure, amplification (in policies), and time delays (in

decisions and actions) may interact to influence the behavior of

an organization. Since a social system is a combination of a

number of simple entities (or agents) that operate in an

environment to generate complex behavior patterns as a

collective, it may be suitable for analyzing the information-

feedback loops and complicated interactions within a biologi-

cal system (Becskei & Serrano, 2000; Gardner & Collins,

2000).

A challenge for applying system dynamics to the analysis of

biological data is that the base model for analysis is often

constructed by human experts who have expertise in the

application domain and are able to draw a flow diagram by

observing the operation of target system to represent the causal

relationships among system entities (variables) (Coyle, 1977;

Lyneis & Pugh, 1996; Starr, 1980). This, however, is not the

case in biological analysis because in most cases the biological

systems under study act like black-boxes and only their input

and output behavior can be observed over time. Thus, direct
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application of system dynamics to the construction of

biological models is very difficult, if not impossible. We

need a mechanism to bridge the gap.

A possible way to deal with the problem is to use data mining

techniques to analyze the observed behavior data to discover the

hidden relationships and/or rules behind the system dynamics.

In order to do this, a data mining method needs to be augmented;

it has to have a conceptual framework beforehand so that the

findings from data will be express in the form of a system model.

In this paper, we will use a combination of genetic algorithms

and artificial neural networks to implement the idea. The

artificial network is designed to emulate a system dynamics

model and then encode into a genetic form for learning. The

proposed approach is applied to experiment on the synthetic cell

division cycle model (CDC6, hereafter) created by Tyson

(1991). The behavior data generated by CDC6 model is given as

an input to the developed method to learn the model’s kinetic

parameters. The results are then compared with the original data

to evaluate the effectiveness of the approach.

The remainder of the paper is organized as follows. Section

2 is a brief review of related literature. Section 3 describes the

proposed approach for mining behavior relationships from a set

of observed biological data. Section 4 illustrates the result

when the approach is applied to the CDC6 model. Section 5

concludes the paper.

2. Review of literature

2.1. Systems biology

One thing that realizes systems biology is the high-throughput

measurement devices for DNA, RNA, and proteins. The

ascendancy of these high-throughput devices in the past decade

has permanently changed the biological landscape of genomics,

proteomics, and metabolomics studies (Henry & Washington,

2003). Rising as a new star under this background, systems

biology aims at a system-level understanding of biological

systems (Kitano, 2002a). Unlike molecular biology, which

focuses on the study of molecules such as nucleotide acids or

protein sequences, systems biology focuses on dynamics of

systems, which cannot be described merely by enumerating the

molecular components of the system (Henry & Washington,

2003). Another misleading concept in molecular biology is to

believe that only system structure, e.g. network topologies, is

important without paying attention to the diversities and

functionalities of system components. Both the structure and

the components are indispensable in forming the symbiotic state

of a system as a whole (Henry & Washington, 2003).

Research of systems biology focuses on four key properties

of a biological system: (1) system structure, (2) system

dynamics, (3) control method, and (4) design method (Kitano,

2002a). System structures include networks of gene (or

protein) interactions, biochemical pathways, and the mechan-

isms to modulate the physical properties of intra- and multi-

cellular structures.

System dynamics concerns a system’s dynamics behavior

over time under various conditions. There are currently several
methods to analyze the dynamics of a system from different

perspectives: metabolic analysis, sensitivity analysis, phase

portrait analysis, bifurcation analysis, and analysis by

identifying essential mechanisms of a specific behavior

(Kitano, 2002a). The typical one is bifurcation analysis,

which traces the time-varying state changes of the system

with a multi-dimensional plot(s) where each dimension

represents a particular biochemical concentration involved in

the interaction.

Control methods are related to ways to control the states of a

biological system, e.g. the methods to transform cells from

malfunctioning into healthy ones. It is an application that

makes the knowledge obtained from system structure and

system dynamics. Design methods move even further. It

intends to establish technologies to design biological systems

in a way we wish. An example is the attempt to actually design

and grow organs from the patient’s own tissue (Kitano, 2002a).

Research of systems biology is emerging as an area of

potential (Chong & Ray, 2002; Kitano, 2004; Nobel, 2002).

For example, Kitano (2004) recently puts forth a new cancer

treatment proposal from the viewpoint of systems biology.

Cancer disease has a very robust system, which causes many

medical treatments fail to control the growth of cancer cells.

Thus, it is hard to defeat a cancer by simply alternating some

constituent of the system, but it may be possible to put cancer

cells into the status of dormancy or apoptosis, if one can change

the kinetic parameters (rates) of the system from a system’s

viewpoint. Recognizing the importance and potential of

systems biology, a special issue on this subject has been

published in the March 2002 issue of Science.

2.2. System dynamics models

As mentioned above, system dynamics concerns a system’s

dynamics behavior over time under various conditions. Its

emergence dates back to the publication Industrial Dynamics

by Jay W. Forrester early in 1961 (Forrester, 1961). In his

book, Forrester defines system dynamics as “the study of the

information-feedback characteristics of industrial activity to

show how organizational structure, amplification (in policies),

and time delays (in decisions and actions) interact to influence

the success of the enterprise.”

A system dynamics model is one that models the dynamics

of such a system. There are some different ways to do this and

the most typical one is Forrester’s flow diagram (Forrester,

1961). As an example, the elementary inventory control system

(see Fig. 1) described in Forrester’s book is redrawn here to

illustrate the notation and modeling concepts.

For simplicity, assume that the order rate (OR) in the model

can be either positive or negative, i.e. goods can either be ordered

into the inventory or returned back to a supplier. The goal is to

maintain the inventory at a fixed level defined by the desired

inventory (DI) for duration of time. In order to bring the actual

inventory toward the desired level, one has to increase the order

rate when the inventory falls far below the desired value, and, as it

approaches the desired inventory, the order rate should be

gradually reduced. If, on the other hand, the inventory becomes
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higher than the desired level, the order rate becomes negative,

indicating that goods are being returned to the supplier.

In thisdiagram, rectanglesdenote levelvariables, which represent

the conditions (or states) of the system at a particular time. Level

variables accumulate the results of actions within a system. At the

end of each time interval, the value of a level is recalculated, which is

determined by its previous value, the rates (or actions) of flows into

and off the level, and the length of the time interval.

A rate variable is represented by a valve symbol, which

denotes a policy statement that describes an action on some level

variable in the system. Rate variables determine not the present

values of levels but the slopes of them, e.g. the order rate in

Fig. 1. The value of a rate itself is dependent on the values of

other levels and constants but has nothing to do with its own past

value, the time interval length, and other rate variables.

Constants are values that do not change over time during the

simulation of a system. They are lines in Fig. 1.

The solid line with an arrow is a flow, which represents an

amount that is transferred from one-level variable (or boundary)

to another in the system. System boundaries are represented by

clouds, which are used to define the borders of flows.

The dash lines with an arrow are wires, which represent

information used from a level or constant to a rate without

depleting the source.

In addition to the components described above, the

model uses mathematical equations to define the constraints

of the system. For instance, the new value of a level may

be defined by a level equation in Forrester’s format, as in

the following:

L:K Z L:J CDTðRA:JKKRS:JKÞ

where

L level

L.K level L’s new value

L.J level L’s old value

DT the time period between JK

RA rate on an inbound flow into the level

RA.JK the delta value increases between time J and K

RS rate on an outbound flow off the level

RS.JK the delta value decreases between time J and K
This equation also shows how rate values, e.g. RA.JK,

affect the level through controlling the amount of value

flowing into or out of it. These values in turn are

determined by other level values and constants through a

rate equation, which in Forrester’s form is:

R:JK Z f ðall levels and constantsÞ

Rate equations are in free format except for three

prohibitions: (1) a rate equation should not contain the time

interval DT; (2) no rate variable is allowed to appear in the right-

hand side of a rate equation; and (3) the left-hand side of the

equation can only contain the rate variables being defined.

As a matter of fact, this kind of system dynamics is very

common in biological world (e.g. Becskei & Serrano, 2000;

Bhalla, Ram, & Iyengar, 2002). Becskei and Serrano (2000), for

example, described a simple gene circuit, which consists of a

regulator and a transcriptional repressor in Escherichia coli. The

stability of the model is maintained by a negative-feedback loop,

which regulates its own production to reduce noises in gene

expression.Therefore, it seemsthatsystemdynamicsmodelingis

a good approach to represent the kinetics of biological systems.
3. An integrated approach for mining hidden relationships

in biological systems

The modeling process starts with a given set of temporal

data from a bio-system and ends with a flow diagram that

describes the dynamics of the system. In particular, the

approach consists of three steps, which (1) represents a bio-

system with a framework of system dynamics model, (2)

transforms the model into a form that can be analyzes by a data

mining technique, (3) executes a learning algorithm to discover

the relationships through a genetic evolutionary process. Fig. 2

shows the major modules of the proposed approach.
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Fig. 3. The inventory model in the partial recurrent neural network form.

Table 1

The component mappings between SDM and PRN

Components for SDMs Components for PRNs

Level variable, constant (not

for coefficient)

A triple of input, output, and state units

Rate (or auxiliary) variable Hidden unit

Wire Link from a state unit to a hidden unit

Flow Link from a hidden unit to output unit

Level equation A weighted sum of the values of hidden

and state units connecting to an output unit

via links

Rate equation (including

constants as coefficients)

Any function of the values of state units

connecting to a hidden unit via links

Equation for initial value Link from an input unit to an output unit

Constant equation Link from a state unit to an output unit
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3.1. Model representation in neural networks

As we have described above, system dynamics models

can provide a good representation of biological systems.

However, traditional system dynamics models do not

provide induction mechanisms for discovering hidden

relationships. Thus, we need to convert a system dynamics

model into a form that fits a learning technique, and we find

that artificial neural networks are suitable for this task

because they two have similar characteristics: system

behavior is determined by the whole structure, not any

individual elements.

In a previous work, Chen and Jeng (2002) has shown

that a specially designed partial recurrent neural network

can be made equivalent to a flow diagram for a system

dynamics model, and propose an algorithm (FD2PRN) to

conduct the transformation. Taking the model in Fig. 1, for

example, the flow diagram can be converted into the

partially recurrent neural network model shown in Fig. 3(c).

The model is composed of three parts: the top left two

nodes are input units, which feed data into the network at

initialization; the bottom two nodes are output units; and the

two nodes on the upper right are state units, which keep the

previous values of the output units.

The mappings between the resulting network model and

the original system model in Fig. 1 can be described as

follows. As illustrated in Fig. 3(a), level (inventory I) and

constant (DI) are corresponded to three units: (input II,

output OI, state SI) and (input IDI, output ODI, state SDI),

respectively. Rate (OR) and the flow, as shown in Fig. 3(b),

are mapped to a hidden unit HOR, and the link from HOR to

OI, respectively. The other type of constants (e.g. AT) that

appear as coefficients in rate equations is converted to the

weights of the links from SI to HOR and from SDI to HOR,

respectively, as is shown in Fig. 3(c). The detail mappings

of individual components between the two models are listed

in Table 1.
3.2. Relationship mining using genetic algorithms

Since data mining discovers knowledge from various

types of given data in different problem domains, it

includes many different techniques, such as tree induction,

clustering, association rules, artificial neural networks and

genetic algorithms, etc. (Berry & Linoff, 1997; He et al.,

2004; Li & Shue, 2004; Shin & Lee, 2002). In the above,

we have shown how to represent our model in the form

of neural networks. The next problem is how to use data

mining techniques to discover hidden relationships in the

model.

A commonly seen approach is to use the gradient descent

algorithm to adapt its link weights through back-propagation

during the learning process. For large non-linear dynamic

biochemical pathways which are known to be frequently ill-

conditioned and multi-modal, however, the method usually

cannot converge to a good solution (Curran & O’Riordan,

2002; Mendes, 2001). Thus, we use genetic algorithms

(Goldberg, 1989; Holland, 1975) to adapt the model. This

kind of combination has been seen in Chang, Wang, and Tsai

(2005); Versace, Bhatt, Hinds, and Shiffer (2004), and so on.
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Genetic algorithms, introduced by John Holland to mimic

the mechanisms of natural adaptation (Holland, 1975), are

widely adopted evolutionary techniques in science, engineer-

ing, and bioinformatics (Fogel & Corne, 2003) for solving

combinatorial problems. Unlike other algorithms, it solves

problems by ‘guess’ and ‘test’, not through an analytical

process. Thus, it requires no knowledge of the search space

beforehand, which is the case in our problem. Past research has

shown that the genetic algorithm and its variations are very

successful in various areas and different applications in biology

(Fogel & Corne, 2003; Koza, Mydlowec, Lanza, Yu, & Keane,

2003; Ritchie, White, Parker, Hahn, & Moore, 2003). A pseudo

code for this algorithm is like the following (Michalewicz,

1994):

procedure genetic-algorithm ( )

/* g: generation number

P: population */

begin

g)0

initialize P(g)

evaluate P(g)

while not-termination-condition do

begin

g)gC1

select P(g) from P(gK1)

recombine P(g)

evaluate P(g)

end

end
3.3. Algorithm implementation

3.3.1. Genetic encoding

The first step to use the genetic algorithms is to encode a

solution as a chromosome (which is usually represented as a

string of symbols). Since we have rephrased a system as a

partial recurrent neural network, we can encode the latter

instead, and there are existing ways to do it (Gruau & Whitley,

1993; Prusinkiewicz & Lindenmayer, 1992). A direct encoding

scheme (Curran & O’Riordan, 2002) is used here that encodes

the link weights as genes in a chromosome.

3.3.2. The fitness function

Ageneratedsolutionduring theevolution process is rankedby

a fitness function that measures the similarity between the target

behavior pattern and the actual one. Since the pattern is a time

series of real value points, a simplest function of such a

measurement is the reciprocal of the Sum of Squared Errors

(SSE). However, in practical experiences, we find that it is better

to use the sum of relative square errors instead, when the range of

parameter values varies large (e.g. from 0.001 to a large number,

e.g. 200). The following equation is our fitness function:

fitness Z
1

P
i

P
t ððyit KŷitÞ=ŷitÞ

2
;

where, yit is the desired output; ŷit is the actual output of some

system variable y; t represents the tth time point, and i represents

the index of a variable.

More complicated functions exist that can measure the

similarity/difference of two time series but we found the above

one is good enough for the current use.

3.3.3. The evolution process

The last step in genetic algorithms is to set up an evolution

process for finding the optimal solution. Parameters to be

determined at this stage include population size (i.e. the

number of chromosomes) and the number of evolution

generations. Trade-offs exist between these two parameters,

and the usual way to do it is by trial-and-error. There are ways

to select a suitable combination of the two parameters (e.g.

Taguchi method), but it is not the focus of this research. Other

parameters to be set for executing a genetic algorithm include

crossover rate and mutation rate.

Because the genetic algorithm is a kind of stochastic

searching processes (Goldberg, 1989; Holland, 1975) with non-

deterministic results, it may require a certain number of

generations before an expected outcome is obtained.

The result of learning depends on what is known initially as

well as the quality of the given data. When applying the

approach to a set of biological behavioral data, it shall return

with a flow diagram that represents the dynamic behavior of the

bio-system.

4. Empirical evaluation

In order to evaluate the feasibility and performance of the

proposed approach, an empirical study has been conducted on a

biological system known as CDC6. We selected the reasonable

comprehensive biological network whose biochemical

reactions are known from literature and then generated its

temporal behavior by a computer model. The simulated data is

later used as an input to our method, and the mining resulting

are compared with the original ones for evaluation.

The selected biological system is one that models the cell

division cycle as shown in Fig. 4 (modified from Tyson, 1991).

A square bracket [ ] in the diagram stands for concentration of a

protein with its abbreviation name inside. The division cycle

can be illustrated as in the following steps. Assume cyclin is

synthesized de novo (step 1) initially. Because this chemical is

unstable (step 2), it combines with cdc2-P (step 3) to form

‘preMPF’. After heterodimer formation, the cyclin subunit is

phosphorylated. Assuming phosphorylation is faster than

dimerization. Thus, the cdc2 subunit is dephosphorylated

(step 4) at some point to form ‘active MPF’. The activation of

MPF, in principle, is opposed by a protein kinase (step 5).

Since active MPF enhances the catalytic activity of the

phosphatase (as indicated by the dashed arrow), the MPF

activation is switched on in an autocatalytic fashion. When a

sufficient amount of MPF is activated, nuclear division is

triggered and the active MPF is destroyed concurrently (step 6)

. The destruction breaks the MPF complex and releases

phosphorylated cyclin, which is subject to rapid proteolysis
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(step 7). Finally, the cdc2 subunit is phosphorylated again

(step 8, possibly reversed by step 9), and the cycle repeats

(Tyson, 1991). The implementation of the proposal approach to

this biological system is illustrated below.
4.1. Initial model

The above is a typical model that describes how chemical

substances interact within a biological system. We convert it

from the perspective of system dynamics with the notations of

flow diagrams seen before. The present concentration of a

protein is determined by its previous value plus the

increment/decrement amount in the current time step. So,

each protein in Fig. 4 will be represented with a ‘level’

(represented by a ‘box’) associated with a ‘rate’ (represented

by a ‘valve’) in the Fig. 5. A wire from a ‘level’ to a ‘rate’

denotes an information-feedback effect from a protein to the

‘rate’.

Let us take protein C2 in Fig. 4 as an example. It is

associated with two input links: M to C2 and CP to C2,

indicating that the current values of M and CP determine the

increment of C2 in each time unit. So, two wires from M and

CP, respectively, to the ‘rate’ for protein C2 are connected. In

addition, C2 has an output link to CP, which indicates a

decrement of C2 in a time unit. So, a wire from ‘level’ C2 to the

‘rate’ for CP exists.

One can repeat the procedure for the rest of proteins in Fig. 4

except for the bottom part of the diagram, where there is an

input link from aa to Y, indicating a constant increment (k1aa).

So, we need to add a ‘constant’ variable k1aa (represented by

diamond) and connect a wire from it to the ‘rate’ for protein Y.

Also, according to literature, the ‘rate’ of pM to M or the ‘rate’
of M to pM is related to the kinetic parameter (k4prime) plus

the square of the M’s concentration. Thus, two ‘constant’ k4p

and M2 are linked to the ‘rate’ of M and pM, respectively. The

finished graph after the conversion is shown in Fig. 5, which is

further transformed into a partial recurrent neural network as

shown in Fig. 6.
4.2. Discovering kinetic parameter values

Note that, although the above diagrams draw the initial

models of the system, they are just the skeleton with no

parametric information and hence cannot be executed. So, the

simulated behavior data generated from the original CDC6

system is used as an input to train the model. We allow the

genetic evolutionary process to run for 500 generations and

each generation has 500 chromosomes. The initial value of

each parameter is guessed randomly in a range of [0,500]. This

process is repeated for 40 times and each takes about a half-

minute on an Intel Pentium 4, 1.8 GHz computer. The best

parameter solution of each process is compared with each other

and the best one of them is the final solution, which is shown in

Table 2a and b. In these two tables, there also show the initial

parameter values and its evolution history. (For reference, the

target parametric values are also given in the last row of the

tables.)

In Table 2, one can see that the parameter values

discovered in the process are quite close although some of

them (k1aa, k3, k9) have a little larger difference. These

reflect the sensitivity of different parameters with respect to

the system behavior changes. However, the behavior of the

system is not affected by these minor parameter variations.

When we compare the learned behaviors with the original

ones in Fig. 7, one can see that they match quite well in all

proteins.
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5. Discussion and conclusions

In this paper, we present an innovative approach that

represents a biological system with a specially designed
Table 2

The initial and learning history of the kinetic parameters

G. No. Para

Fitness k1aa

0 84905.441 46.64439

50 61.816760 0.016121

100 61.770046 0.016121

150 25.922052 0.016121

200 25.917173 0.016105

250 13.830711 0.016105

300 13.826469 0.016111

350 0.9420064 0.016111

400 0.9408610 0.016111

450 0.9408466 0.016111

500 0.9406935 0.016111

Target 0 0.015

G. No. Para

K5notP k6

0 290.16784 497.05465

50 0.042558 0.866736

100 0.042558 0.983811

150 0.042558 0.975722

200 0.009857 0.990632

250 0.009857 0.990632

300 0.009857 0.990632

350 0.009857 0.992455

400 0.009857 0.990845

450 0.009857 0.990845

500 0.009857 0.991116

Target 0 1
artificial neural network and then uses genetic algorithms to

modify the link weights of the network to discover the system’s

kinetic parameters. Although there are tools in some systems

biology’s websites (e.g. http://sbml.org/index.psp) in which
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Fig. 7. The comparison of the learned model behavior (dot line) to the real one

(solid line).
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some of them can perform modeling and simulation, the

proposed approach is unique in that it provides a means to

bridge two sciences: system dynamics and systems biology so

that their knowledge can be shared and transferred for better

integration.

Applying data mining to analysis of bio-information is an

important area of study. The fast progress of biology

development has accumulated a tremendous amount of

experimental data, which becomes a big challenge to efficiently

extract valuable knowledge hidden behind. Data mining can

contribute substantially in this area by generating potential

solutions to save the time and effort of a biologist. The example

shown in our approach is just an initial step to discover related

information from a biological system. The ultimate goal of this

line of study can be using data mining techniques to assist

model construction and behavior analysis in systems biology.

Although we have shown that the proposed approach is

capable of modeling a biological system in systems dynamics

to analyze its behavior, there are many issues that need further

elaboration or investigation. For instance, a further issue

coming after is ‘can this method be applied to reveal structure

information for a biological model?’ This is an area that

traditionally can be handled only by human experts and little

literature can be found in biology. Koza et al. (2001) used

genetic programming to discover the network of chemical

reactions from a set of temporal data, but it required thousands

of processors to run in parallel for a number of hours. Since our

method has been demonstrated to be able to learn kinetic

parameters successfully, it is highly possible that our approach

can be extended to mine structural information of a network.

Since evolving a network involves adding and removing

nodes and links into or off from the network, an extension of

this study is to revise the encoding scheme for partial recurrent

neural networks. For example, we may use a strategy to encode
it indirectly (Curran & O’Riordan, 2002), and describe the

network structure by a set of construction instructions (i.e. a

script) so that, by modifying them, the network structure

changes.

Inferring structural information, however, needs to be more

careful because isomorphism may exist among different

structures, which makes different models generate the same

(or similar) behavior patterns. Over-fitting problems may also

occur when we use data mining. This is a concern about

whether an automatic method will produce a model that

generates ‘the right behavior for the wrong reasons’, or just

tries to ‘confirm but not falsify’ a hypothesis (Oliva, 2003).

Another issue related to this discussion is the ‘robustness’ of

a biological system, which is currently actively investigated in

systems biology (Kitano, 2002b; Morohashi, Winn, Borisuk,

Bolouri, Doyle and Kitano, 2002). It is suggested that

biochemical networks are conserved across species and are

robust to variations in concentrations and kinetic parameters. If

this is true, then what data mining discovers may not have

reliable biological meanings or at least judgments from domain

experts are essential for interpreting and using the resulting

models.
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